

Stanford University GCEP Global Climate & Energy Project

Woods Institute for the Environment Energy Seminar Stanford, May 16, 2007

Security of Geological Storage of CO₂: What Do We and Don't We Know?

Sally M. Benson

Energy Resources Engineering Dept., Stanford University Executive Director, Global Climate and Energy Project

- What is $CO₂$ capture and storage—and why it is important
- \bullet Expert opinion about the security of geological storage and the evidence to support it
- Storage security pyramid—a concept to frame the issue
	- Highlight some active areas of my research team
- Fundamental research needs and opportunities

Where Do the $CO₂$ Emissions **Come From?**

Source: IEA, 2006

Capture and Geologic Storage of CO $_{\rm 2}$ Avoids Emissions

CO₂ Capture and Storage: A Four Step Process

Options for Geological Storage

- Oil and gas fields
	- Depleted fields
	- EOR, EGR
- **Saline formations**
- Unminable coal-seams
- Other
	- Basalt
	- Deep ocean sediments
	- $\boldsymbol{\gamma}$

From IPCC Special Report, 2005

Injected at depths of 1 km or deeper into rocks with tiny pore

spaces

- \bullet Primary trapping
	- Beneath seals made of fine textured rocks that provide a membrane and permeability barrier
- \bullet Secondary trapping
	- $\>$ CO $_2$ dissolves in water
	- $\overline{}$ CO_2 is trapped by capillary forces
	- $\overline{ }$ CO_2 converts to solid minerals

Expert Opinion about Storage Security from the IPCC Special Report on CO₂ Capture and Storage

"… the fraction retained in appropriately selected and managed geological reservoirs is likely to exceed 99% over 1,000 years."

" With appropriate site selection informed by available subsurface information, a monitoring program to detect problems, a regulatory system, and the appropriate use of remediation methods t o stop or control CO ² releases if they arise, the local health, safety and environment risks of geological storage would be comparable to risks of current activities such as natural gas storage, EOR, and deep underground disposal of acid gas."

IPCC Special Report on $CO₂$ Capture and Storage, 2005

Evidence to Support these Conclusions

- \bullet Natural analogs
	- $\overline{ }$ Oil and gas reservoirs
	- \overline{a} CO_2 reservoirs
- \bullet Performance of industrial analogs
	- \overline{a} 30+ years experience with CO_{2} EOR
	- 100 years experience with natural gas storage
	- Acid gas disposal
- 20+ years of cumulative performance of actual CO $_{\rm 2}$ storage projects
	- \overline{a} Sleipner, off-shore Norway, 1996
	- $\overline{ }$ Weyburn, Canada, 2000
	- In Salah, Algeria, 2004

Underground Natural Gas Storage

~35 Mt/yr are injected for $\mathrm{CO}_2\text{-EOR}$

Geological Storage Safety and Security Pyramid

Geological Storage Safety and Security Pyramid

Some Key Issues for CO₂ Storage in Deep Saline Aquifers

- What fraction of the pore space can be filled with $CO₂$?
- How big will the $CO₂$ plume be?
- How much $CO₂$ will be dissolved? \bullet
- How much will capillary trapping immobilize $CO₂$? \bullet
- Can accurate models be developed to predict $CO₂$ fate and transport?

Courtesy of Christine Doughty, LBNL

Core-flood Set-Up for Relative Permeability **Measurements** \overline{G}

*Brine composition: CO₂ saturated brine with 0.5 molar potassium iodide

Core-Scale Imaging of $CO₂$ Distributions

UO Gumb Gummo o $UGWOR2@GRPROY$

JJ J J J JJJ JJJ JJJJ

Simulated CO₂ Saturations

Variable P_c Produces Small-scale CO₂ Saturation Variations

CO₂ Saturation:0% $170%$

Geological Storage Safety and Security Pyramid

Seismic Monitoring Data from Sleipner Seismic Monitoring Data from Sleipner

Sleipner Aquifer Storage Project

From Andy Chadwick, 2004

Photo and *image, courtesy of Statoil*

An Alternative Approach: Real-Time Seismic Monitoring

An Alternative Approach: Real-Time Seismic Monitoring

An Alternative Approach: Real-Time Seismic Monitoring

Proof of Concept: Real-Time Seismic Monitoring

Daley, et al, Geophysics, in press.

Real-Time CO₂ Tracking

C ross Well Data M atc h

Geological Storage Safety and Security Pyramid

Primary and Secondary Trapping Mechanisms

Time since injection stops (years)

Quantifying Secondary Trapping Mechanisms

ίm)

Computational Grid

Geological Model

Numerical Simulations of Plume Movement and Trapping

Trapping Rates and Efficiency

Simulated Trapping

 CO_2 Trapping 30-Years Post Injection

Conceptual Risk Profile for Geological Storage

Phased Approach and Hybrid to **Financial Responsibility**

Fundamental Research Needs

Influence of heterogeneity at all scales on plume migration

0eochemical reactions and kinetics in multi-phase flow systems

Dynamic imaging of complex multi-phase flows

0eomechanical and hydrological effects of large anthropogenic perturbations

Flow and transport properties of seals, faults and fractures

Greater confidence in simulation models

Greater confidence in mineral trapping

Better quality monitoring

Better knowledge of CO_2 leakage and brine migration potential

More reliable seal assessment and site selection

Integrated Technology Development Pathway

